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Image Deblurring with a Class-Specific Prior
Saeed Anwar, Cong Phuoc Huynh, Fatih Porikli

Abstract—A fundamental problem in image deblurring is to recover reliably distinct spatial frequencies that have been suppressed by
the blur kernel. To tackle this issue, existing image deblurring techniques often rely on generic image priors such as the sparsity of
salient features including image gradients and edges. However, these priors only help recover part of the frequency spectrum, such as
the frequencies near the high-end. To this end, we pose the following specific questions: (i) Does any image class information offer an
advantage over existing generic priors for image quality restoration? (ii) If a class-specific prior exists, how should it be encoded into a
deblurring framework to recover attenuated image frequencies? Throughout this work, we devise a class-specific prior based on the
band-pass filter responses and incorporate it into a deblurring strategy. More specifically, we show that the subspace of band-pass
filtered images and their intensity distributions serve as useful priors for recovering image frequencies that are difficult to recover by
generic image priors. We demonstrate that our image deblurring framework, when equipped with the above priors, significantly
outperforms many state-of-the-art methods using generic image priors or class-specific exemplars.

Index Terms—image deblurring, blind deconvolution, image prior, class prior.
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1 INTRODUCTION

IMAGE deblurring is an important and long-standing
research challenge in low-level vision dating back to

1960s [1]. Blur due to camera shake and camera motion
is still a prevalent issue with images captured by hand-
held devices, e.g. smartphones or tablet computers. With an
exponentially increasing amount of image data captured by
these devices, there has been continuing research effort in
image deblurring in the last decade [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15].

In this paper, we focus our attention on the case of
uniform blur, in which a sharp image is convolved with
a spatially uniform blur kernel. The goal of blind image
deblurring is hence viewed as solving for the latent image
x and the kernel k given the blurred image y. By nature,
image deblurring is an ill-posed problem, as there exists an
infinite number of pairs of latent image x and kernel k that
result in the same observation y.

To resolve the above ambiguity, previous works have
exploited the sparsity of natural image gradients to im-
pose additional constraints on the deblurring problem. This
sparsity constraint is commonly stated in terms of the
hyper-Laplacian prior [16], [17], the `0 [9], `1 [6] and `2-
norms [5], the `1/`2 prior [7], a Gaussian [18] or a mix-
ture of Gaussians [3] of the image gradients. A common
feature in these works is the presence of a regulariser that
minimises the sparsity of the image gradient. As a result,
these methods favour images with strong high-frequency
components while ignoring other spatial frequencies. For
this reason, these methods are not suitable for many object
categories with gradual changes in the surface orientation
such as faces, animals, cars, etc.

Furthermore, a common symptom of deblurred images
is the presence of ringing artifacts. Mosleh et al. [11] has
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proposed a solution to the detection and removal of ringing
by generating a set of Gabor filters that reveals existing ring-
ing artifacts in deblurred images and incorporating these
filters in a regularisation scheme to suppress the artifacts.
Meanwhile, Whyte et al. [15] address the issue of ringing
reduction in the presence of saturated pixels. We draw a
general remark, from the analysis of these works, that the
main cause of ringing is the suppression of some spatial
frequencies by the blur kernel. The frequencies missing
from the blur kernel usually cause the Fourier sum of the
remaining waves to overshoot at jumps in image intensity.
This is known as the Gibbs phenomenon [19], rendering
ringing artifacts to appear near strong edges.

To overcome the above problem, we leverage prior
knowledge of the distribution of frequency components
specific to each image class, rather than generic gradient
sparsity priors. As a natural choice, we analyse images in
the Fourier space due to the convenient transformation of
the blur model between the spatial and transfer domain. In-
stead of imposing a general sparsity constraint, we focus on
modeling a class-specific prior in each band of the Fourier
spectrum. Specifically, we learn a subspace spanned by the
filter responses of sharp images in each class to a band-pass
filter. Repeating this learning process over multiple band-
pass filters, we capture the characteristics of the target image
class across a wide range of frequency bands. The spirit of
this work is to discover a more comprehensive prior than
those based exclusively on edges or high-frequency image
gradients. With our learned priors in hand, we perform the
deblurring process in a content-aware fashion.

Figure 1 depicts our approach to the restoration of
the spatial frequencies attenuated by a blurring kernel.
In the first row, we display a sample image from the
Cat dataset [20] (first column) and the magnitudes of its
Fourier components in three frequency bands (the subse-
quent columns). The frequency components in each band
are obtained by a convolution of the input image with a But-
terworth band-pass filter. Although most of the frequency
components of the blurred image (second row) have been



2

O
ri

gi
na

l
Bl

ur
re

d
Tr

ai
ni

ng
D

eb
lu

rr
ed

Image Band 1 Band 2 Band 3

Fig. 1: Recovering spatial frequencies that have been sup-
pressed by a blur kernel using band-pass frequency compo-
nents from the training data.

annihilated, the recovered image (shown in the last row)
contains many frequency components present in the original
(in the third row).

Our method is inspired by previous works on image
categorisation using image statistics. In [21], the authors
investigated the spectral signature, i.e., the power spectra of
the horizontal and vertical image gradients for each image
category. The shape of this spectral signature is an indicator
of the scale (size) of the primary element in the scene. This
study revealed significant variations in the power spectrum
across different image categories, which could enable the
categorisation of natural and man-made images. In a related
work, Geusebroek and Smeulders [22] modeled the spatial
statistics using a parametric Weibull distribution for the
characterisation of uniform stochastic textures. Building on
this model, subsequent works have proposed methods for
image categorisation using local texture descriptors [23].
Specific to image deblurring, Levin [24] integrated the
statistics of derivative filters into a maximum likelihood
method for blind motion deblurring. However, this study
was limited to blurs caused only by a one-dimensional box
kernel. The other practical limitation is that it requires the
segmentation of the image into layers with common blurs.

We advance the above formulation of image statistics
for the purpose of image characterisation. In the previous
works, image statistics constitute the power spectra of image
gradients or derivative filters, which can be viewed as re-
sponses to high-frequency filters. In our work, we generalise

Fig. 2: A visual demonstration of the proposed prior. Top
row (from left to right): original (ground-truth) image x∗,
input blurred image y, the image reconstructed by the
weighted combination of 200 filtered training images, and
the absolute difference ‖x − x∗‖. Second row (from left
to right): the four most important filtered training images
sorted by the descending order of their weights (shown in
the inset). Third row: the training images corresponding to
those in the second row. Fourth row: the bandpass filters
(shown in the frequency domain) involved in the filtered
training images in the second row.

this notion and consider the distribution of image responses
to band-pass filters across all the bands in the frequency
spectrum. The novel class prior is based on the following
conjectures. Firstly, for every image band, the distribution of
band-pass filter responses is characteristic of the image class.
Secondly, the band-pass filter responses of images in the
same class span a linear subspace. As we shall demonstrate
later, these two underpinning conjectures alone are proven
to be effective in recovering frequencies suppressed by blur
kernels.

To perform blind deblurring, we incorporate the linear
subspaces of band-pass filter responses as a class-specific
image prior, together with a common `2-norm kernel prior
into a joint objective function. Subsequently, we employ
an iterative optimisation approach over several coarse-to-
fine image resolutions. In each iteration, the latent image
and kernel can be alternately computed as a closed-form
solution.

We provide a visual illustration of the relevant train-
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ing images and bandpass filters selected by the proposed
image prior. Figure 2 shows an example blurry image (in
the second column of the first row), and the four most
relevant filtered training images in the second row, together
with their weights (shown in the inset). The corresponding
training images are displayed in the third row and the
associated bandpass filters are in the fourth row. It can
be seen that, the algorithm selects a variety of frequency
components from different training images to compose the
latent image, including low-frequency details from the first
two training images, and mid-frequency details from the
latter two. Noticeably, the latent image constructed from
the combination of the bandpass components of the training
images (in the third column of the first row) is free of blur,
especially near edges. Most of the mid-frequency to high-
frequency components have been recovered. The absolute
difference image (in the fourth column of the first row)
simply shows low to mid-frequency details, which could
be recovered by a final non-blind deconvolution step.

1.1 Related Work

Utilising edge information as a form of image sparsity,
single image deblurring methods rely on the implicit or
explicit extraction of this information for kernel computa-
tion. Several approaches [5], [6] enhance the detection and
selection of strong edges via various techniques such as
bilateral filtering, shock filtering, and gradient magnitude
thresholding. Joshi et al. [25] predicted the step edges under-
lying the blurred ones for the estimation of spatially varying
sub-pixel point-spread functions (PSF). Cho et al. [26] also
detected step edges in blurry images and used this informa-
tion to compute the Radon transform of the blur kernel. A
concern about these approaches is that wrong edges can be
mistakenly selected based on only local information, due
to the possible presence of multiple copies of the same
edge induced by a large kernel width. Moreover, object
classes with relatively limited texture details such as face
and text do not usually benefit from methods using local
edge information.

There has been a few notable examples of deconvolution
methods that utilise image edge information for the estima-
tion of the blur kernel. The fast deconvolution algorithm is
based on the hyper Laplacian prior [16] and a decompo-
sition of the inverse kernels in the frequency domain into
a series of 1D kernels of Xu et al. [14]. Whyte et al. [15]
proposed a model to effectively reduce the ringing artifacts
by simply discarding the saturated pixels, using only the
non-saturated ones to estimate the blur kernel. Specific to
text image deblurring, Pan et al. [13] proposed an effective
L0 regularisation method. This method works well with
smooth surfaces but is less effective for non-uniform and
highly textured areas/background. Our method is distin-
guishable from all the above, as the latter only utilise generic
edge priors into account, without considering class-specific
spatial priors. Furthermore, these methods do not rely on
external training images in additional to the input image.

Another approach is to adopt a probabilistic viewpoint
by modelling the posterior probability of the latent image
and the kernel. With this view, Fergus et al. [3] modelled
the distribution of the latent image gradients as a mixture

of zero-mean Gaussians and the distribution of the kernel
elements as a mixture of exponential distributions. On the
other hand, Shan et al. [4] opted for a Maximum a Posteriori
(MAP) formulation under the assumption of a Gaussian
noise model. This formulation eventually leads to an ob-
jective function with norm constraints on the latent image
to model the gradient sparsity and the smooth local prior
of the image, and `1-norm regulariser on the blur kernels.
Improving upon this approach, Levin et al. [8] aimed at
maximising the posterior distribution with the best kernel
while marginalising over all possible latent images. To re-
duce computational complexity, they tackle an approximate
MAP problem with an EM-like iteration strategy.

As an alternative, several methods [27], [28], [29] have
employed selective information from image patches and
their priors, rather than the whole image. Zoran and
Weiss [27] proposed patch-based image prior using GMM
model, which is overly expressive i.e. models a wide range
of phenomena including motion blur and defocus blur,
and will eventually accommodate blur, causing imprecise
convergence of the solution pair. Building on the idea of [27],
Sun et al. [28] modelled the patch-based image prior using
atomic elements, namely, edges, corners, T-junctions, etc.
learned from natural image datasets and synthetic struc-
tures. Michaeli and Irani [29] exploited the multi-scale patch
recurrence property as a natural image prior to recover the
blur kernel.

In addition, several works have started to pursue the
“learning to deblur” approach with a large amount of
training data [30], [31]. Schuler et al. [30] proposed to learn
a stack of multiple neural sub-networks, each consisting of
three modules to estimate the blur kernel. An interesting
finding from Schuler et al. [30] is that the deblurring quality
for a specific class in the ImageNet dataset improves when
the proposed neural network is trained on images from
the same class, rather than the entire dataset (Section 6.1).
In their work, neural networks were employed as a black-
box tool for kernel estimation, and the rationale behind this
observation was not much studied and understood. Here,
we offer an in-depth study on class-specificity for image
deblurring from a classical image processing perspective.
We also compare a class-agnostic and a class-specific variant
of our algorithm and concur with a similar observation as
Schuler et al. [30] (see Section 4.3 for details). In a related
development, Chakrabarti [31] proposed to learn a neural
network which predicts the complex Fourier coefficients of
a motion blur kernel as an input to a subsequent non-blind
convolution step. Qualitative results shows that it does not
cope well with dense texture.

Recently, class-specific information has been employed
up to some extent for image deblurring. Joshi et al. [32] pro-
posed a method for personal photo enhancement, includ-
ing deblurring, given examples in a photo collection. This
approach requires manual annotation of face regions for
the matting and segmentation of faces from input images.
HaCohen et al. [33] tackled this problem, requiring a dense
correspondence between a sharp reference image and its
corresponding blurred image. This method produces decent
results for complex kernels, but has limited applications due
to the strict requirements of the similar content between the
reference and the blurred image. In another work, Sun et
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al. [34] investigated context-specific priors to transfer mid
and high frequency details from example scenes for non-
blind deconvolution.

Lately, Pan et al. [12] introduced a face image deblurring
method by selecting the best exemplar from a training set
with the closest structural similarity to the blurred image. It
requires manual annotations of salient features such as the
eyes, mouth and lower contour of the face for each training
image. Information at these locations then serves as guid-
ance for deblurring face images. In contrast, our method
neither requires manual annotations of the training data nor
relies on the similarity between the blurred image and the
training image contents. Specific to face image deblurring,
our method does not require the person or the background
in the blurred image to be present in the training dataset.

2 PROBLEM FORMULATION

In this section, we introduce our class-specific image prior
and incorporate it into an optimisation framework. Given
a set of N sharp training images {zi|i = 1, . . . , N} and an
arbitrary blurred image y that belongs to the same class, we
aim to recover the latent image x and the kernel k.

2.1 Image prior
We formulate the deblurring problem in the Fourier domain
by first obtaining a bank of Butterworth bandpass filters,
each of which has a constant magnitude in a certain (2D) fre-
quency band and zero elsewhere. The visual representation
of bandpass filters in the frequency domain are concentric
circular bands (centered at the origin) with unit values. To
filter an image with a Butterworth bandpass filter, we first
clip its frequency components in the Fourier domain to the
range defined by the bandpass filter (corresponding to the
filter’s non-zero frequencies). Subsequently, the remaining
frequency components are transformed to the spatial do-
main via an inverse Fourier transform.

The main underlying hypothesis of our novel class-
specific prior with the hypothesis is that the frequency
components in each band span a sparse linear subspace
in the Fourier domain. To this end, we let Fx(ω) denote
the Fourier coefficient of the 2D image x at the spatial
frequency ω. aving divided the frequency spectrum into a
set of M frequency bands, we formulate the linear subspace
constraint for band bj as

Fx(ω) =
N∑
i=1

wi,jFzi(ω),∀ω ∈ bj , j = 1, . . . ,M, (1)

where wi,j is a weight associated with the training image
zi and the band bj in the representation of the latent image
x. This coefficient correlates to the similarity between the
frequency components of the training and the latent image
in the band bj .

In addition, we enforce sparsity on the weight vec-
tor wj , [w1,j , . . . , wN,j ] for each band bj . The sparsity
constraint emphasizes the major contributions from a few
training images to the representation of the latent image x
for each separate band. Here, we express this constraint as a
minimisation of the L1-norm ‖wj‖1 due to its well-known
robustness. Combining the linear subspace constraint and

the sparsity constraint on wj over all the frequency bands,
we define the prior function P (x,w) as

P (x,w) , γ
M∑
j=1

∑
ω∈bj

|Fx(ω)−
N∑
i=1

wi,jFzi(ω)|2

+ τ
M∑
j=1

‖wj‖1,

(2)

where γ and τ are the balance factors of the reconstruction
error and the sparsity term, respectively, and | · | denotes the
modulus of a complex number.

For each band bj , we define a corresponding band-pass
filter fj , such as a Butterworth filter [35], whose Fourier
transform is a non-zero constant c within bj and zero
elsewhere. With this filter, let us consider the 2D function
g = x ⊗ fj −

∑N
i=1 wi,j(zi ⊗ fj), where ⊗ denotes the

convolution operator. The Fourier transform of this function
is

Fg(ω) =

{
c
(
Fx(ω)−

∑N
i=1 wi,jFzi

(ω)
)

∀ω ∈ bj ,
0 otherwise

(3)
Applying the Parseval’s theorem to the function g, we

have
∫
g(u)2du =

∫
|Fg(ω)|2dω. Noting that

∫
|Fg(ω)|2dω

is a multiple of the reconstruction error in Equation 2, we
rewrite it as follows

P (x,w) = β
M∑
j=1

‖x⊗ fj −
N∑
i=1

wi,j(zi⊗ fj)‖22 + τ
M∑
j=1

‖wj‖1,

(4)
where we use the variable substitution β , γ

c2 .

2.2 Objective function
In image deblurring, the aim is to minimise the data fidelity
term associated with the blur model y = x ⊗ k + n, where
n is the image noise. In addition, several deblurring ap-
proaches have utilised image gradients to enforce an a priori
image gradient distribution, i.e. natural image statistics [3]
and to better capture the spatial randomness of noise [4].
Following these previous approaches, we also exploit the
derivative form of the blur model and aim to minimise the
error ‖∇dx ⊗ k − ∇dy‖22, where ∇d denotes the gradient
operator in the direction d ∈ {x, y}.

In addition, we employ a regulariser on the blur ker-
nel using the conventional L2-norm ‖k‖22 as in previous
works [5], [36]. Combining all the above components, we
arrive at a minimisation of the objective function

J(x,w,k) = ‖x⊗ k− y‖22 + P (x,w)

+
∑

d∈{x,y}

‖∇dx⊗ k−∇dy‖22 + α‖k‖22, (5)

where α is the balancing factor for the kernel regulariser.

3 DEBLURRING FRAMEWORK

Given y, {fb|b = 1, . . . ,M} and {zi|i = 1, . . . , N}, we aim
to minimise the objective function in Equation 5 with respect
to the unknowns x,w and k. Since a simultaneous minimi-
sation with respect to all the variables is computationally
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expensive, we adopt an alternating minimisation scheme.
In each iteration of this scheme, we solve a sub-problem
with respect to one of the variables x,w and k, while fixing
the others. The following subsections describe the solution
to each sub-problem.

3.1 Estimating w given x and k

Assuming that x, and k have been obtained in an ear-
lier iteration, we aim to minimise the objective function
J(x,w,k) with respect to the weights wi,j . Here, we note
that P (x,w) in Equation 5 can be decomposed into separate
bands. Therefore, we can break down the above problem
into the minimisation of the following function (with respect
to wj) for each band bj

Jwj = ‖x⊗ fj −
N∑
i=1

wi,j(zi ⊗ fj)‖22 +
τ

β
‖wj‖1, (6)

We vectorise the images involved in the above Equation
using the following shorthand notation x̃j = vec(x ⊗ fj)
and z̃i,j = vec(zi ⊗ fj). The minimisation of the above cost
function can be regarded as an `1-regularized least-squares
problem and can be solved by standard techniques such as
the one reported in [37]. The above problem is usually well-
formed when the length of x̃j and z̃i,j exceeds that of wj ,
i.e. the number of image pixels is more than the number of
training images N .

3.2 Latent image estimation
With the current update of the contributions wj , j =
1, . . . ,M , from the training images to each band, and the
kernel k, we now estimate the latent image so as to minimise
Equation 5. Similar to the approach above, we only consider
the sum of the terms dependent on x

Jx = ‖x⊗ k− y‖22 +
∑

d∈{x,y}

‖∇dx⊗ k−∇dy‖22

+ β
M∑
j=1

‖x⊗ fj −
N∑
i=1

wi,j(zi ⊗ fj)‖22.
(7)

To this end, we apply the Parseval’s theorem to the
terms on the right-hand side of Equation 7. This theorem
states that the total energy of a function over the spatial
domain is equal to that of its Fourier transform over the
frequency domain. We also note that the image derivative
∇dx can be expressed as a convolution as ∇d ⊗ x, where
∇d is a convolution kernel representing the corresponding
derivative operation. With these ingredients, we rewrite
Equation 7 in the Fourier transforms of its terms as

Jx =

∫
|Fx(ω)Fk(ω)−Fy(ω)|2dω

+
∑

d∈{x,y}

∫
|F∇d

(ω)Fx(ω)Fk(ω)−F∇d
(ω)Fy(ω)|2dω

+ β
M∑
j=1

∫
|Fx(ω)Ffj (ω)−

N∑
i=1

wi,jFzi
(ω)Ffj (ω)|2dω,

(8)

where ω represents a spatial frequency, | · | signifies the
modulus of a complex number and all the integrals are taken
over the entire frequency spectrum.

The Parseval’s theorem yields a convenient expression
with respect to the Fourier transform of the latent image.
Since the function in Equation 8 is a convex function of
Fx(ω) in the Fourier domain, a local optimisation method
can be applied to obtain its global minimum. Also, we note
that ∂(|z|2)

∂z = z, where z is the conjugate of the complex
number z. For brevity, we omit the frequency ω from the
following expressions. By the chain rule, we derive the
partial derivative with respect to the Fourier transform Fx

as follows

∂Jx
∂Fx

= 2(Fk

(
FxFk −Fy

)
+

∑
d∈{x,y}

F∇d
Fk

(
F∇d
FxFk −F∇d

Fy

)
+ β

M∑
j=1

Ffj (FxFfj −
N∑
i=1

wi,jFzi
Ffj )),

(9)

where the multiplications on the right-hand side are per-
formed frequency-wise in the Fourier domain.

We rewrite the complex conjugate of ∂Jx
∂Fx

as follows(
∂Jx
∂Fx

)
= 2(|Fk|2Fx −FkFy

+
∑

d∈{x,y}

(
|F∇d

Fk|2Fx − |F∇d
|2FkFy

)
+ β

M∑
j=1

|Ffj |2(Fx −
N∑
i=1

wi,jFzi)).

(10)

By equating the complex conjugate of ∂Jx
∂Fx

to zero, we
obtain the following closed-form solution for the latent
image x

Fx = (FkFy +
∑
d

|F∇d
|2FkFy + β

M∑
j=1

|Ffj |2
N∑
i=1

wi,jFzi
)./

(|Fk|2 +
∑
d

|F∇d
Fk|2 + β

M∑
j=1

|Ffj |2),

(11)

where the ./ notation stands for a frequency-wise division
in the Fourier domain. The latent image can be obtained by
an inverse Fourier transform of the solution to Fx.

3.3 Blur kernel estimation

Once the latent image x is computed, the next step is
to estimate the blur kernel k. Based on Equation 5, this
optimisation step involves the following terms

Jk = ‖x⊗k−y‖22+
∑
d

‖∇dx⊗k−∇dy‖22+α‖k‖22. (12)

Again, we leverage the Parseval’s theorem and express the
above function in the Fourier domain as

Jk =

∫
|Fx(ω)Fk(ω)−Fy(ω)|2dω + α

∫
|Fk(ω)|2dω

+
∑

d∈{x,y}

∫
|F∇d

(ω)Fx(ω)Fk(ω)−F∇d
(ω)Fy(ω)|2dω.

(13)
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Algorithm 1 Deblurring with the class-specific prior.

Require:
y: the given blurred image.
zi, i = 1, . . . , N : the class-specific training images.
fj , j = 1, . . . ,M : a set of band-pass filters covering the
frequency spectrum.
α, β: the weights of the terms in Equation 5.
ρ: the attenuation factor of the class-specific prior.

1: Fx ← Fy.
2: k← δ (Dirac delta kernel).
3: while size(k) ≤ max size do
4: β ← β0.
5: repeat
6: Minimise Jwj

in 6 w.r.t. wj , ∀j, with solver in [37].
7: Update x according to Equation 11.
8: β ← ρβ.
9: Update k according to Equation 16.

10: until the maximum number of iterations is reached
or x and k change by an amount below a relative
tolerance threshold.

11: k ← upsample(k) (Initialisation of kernel for the
following scale) .

12: end while
13: return Latent image x and blur kernel k.

where, as before, the integrals are taken over the entire
frequency spectrum.

Since Jk is a quadratic function of Fk(ω), we can obtain
the minimiser by setting ∂Jk

∂Fk
to zero. This derivative can be

expanded as

∂Jk
∂Fk

= Fx

(
FxFk −Fy

)
+

∑
d∈{x,y}

F∇d
Fx

(
F∇d
FxFk −F∇d

Fy

)
+ αFk.

(14)

Setting the complex conjugate of the above equation to
zero, we obtain the following closed-form solution for Fk as

Fk = (FxFy +
∑
d

|F∇d
|2FxFy)./

(|Fx|2 +
∑
d

|F∇d
Fx|2 + α).

(15)

For sparse kernels such as motion kernels, which contain
mainly high-frequency components, we choose to follow the
practice in [8] and include only the image gradient term in
the above Equation as its frequency components are more
relevant to the kernel spectrum. In that case, the closed-form
solution for k is simplified as

k = F−1
( ∑

d∈{x,y} |F∇d
|2FxFy∑

d∈{x,y} |F∇d
Fx|2 + α

)
, (16)

where F−1(·) denotes the inverse Fourier transform.

3.4 Implementation
Our optimisation approach is summarised in Algo-

rithm 1. The algorithm takes, as input, a given blurred image
y, a training set of sharp images zi, i = 1, . . . , N and a bank

of band-pass filters fj , j = 1, . . . ,M , which together cover
the entire frequency spectrum. With this input, it aims to
compute the latent image x and the blur kernel k.

The algorithm commences with the initialisation of the
latent image and the kernel to the given blurred image
and the Dirac delta function, respectively. Subsequently,
it proceeds in an iterative manner. In each iteration, we
minimise the objective function with respect to w, x and
k in alternating steps, as shown in lines 6, 7 and 9. The
update steps for x and k are undertaken by fast forward
and inverse Fourier transforms according to Equations 11
and 15. After every iteration, k is centred and normalised so
that the sum of its elements is unity. Meanwhile, to solve for
w, we minimise the cost function in Equation 6 using the L1

least-squares solver in [37]. The algorithm terminates when
the values of x and k do not change by pre-determined
tolerance thresholds over two successive iterations.

To improve the stability of the estimates, we progres-
sively increase the kernel size in a coarse-to-fine scheme.
Within a fixed kernel scale, we iterate between the estima-
tion steps with respect to w, x and k until convergence,
before expanding the kernel size to the next scale. The initial
kernel size is 3×3 and the expansion factor between two
successive scales which we found empirically is

√
1.6.

To initialise the kernel in the next scale, we upsample
the kernel estimated in the previous iteration using bicubic
interpolation. Since iterations at a finer kernel resolution
usually inherit good estimates from those at coarser resolu-
tions before further fine-tuning, we enforce a small number
of iterations typically between fifteen and twenty for kernel
resolutions of 11× 11 and above.

In addition, while we preset the weight α of the kernel
regulariser, we adjust the weight β of the class-specific prior
incrementally over iterations. The reason for this adjustment
is that we initially prefer to obtain as much class information
as needed to constrain the space of the latent image. On
the other hand, as the iterations proceed, we deliberately
decrease the influence of this term so that the estimation
is increasingly driven by the data fidelity term. In other
words, the resulting latent image and kernel will increas-
ingly gather instance-specific details from the given blurred
image, rather than the class prior. This step is taken after the
update of x in every iteration, as shown in line 8.

3.5 Extension to colour images

While Algorithm 1 accepts grayscale images as input, it can
be extended to deblur colour images in a straightforward
manner. This extension assumes that all the colour channels
have been distorted by the same spatially uniform blur
kernel. In this case, the variables w and x are defined per
colour channel c ∈ {R,G,B} as wc and xc, while the kernel
k is the same all the channels. The objective function is then
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modified as

J(xc,wc,k) =
∑
c

[
β
M∑
j=1

‖xc ⊗ fj −
N∑
i=1

wi,j,c(zi,c ⊗ fj)‖22

+ ‖xc ⊗ k− yc‖22 +
∑

d∈{x,y}

‖∇dxc ⊗ k−∇dyc‖22

+ τ
M∑
j=1

‖wj,c‖1
]
+ α‖k‖22.

(17)

The solution for wc can be derived by minimising the
following function per channel

J(xc,wc) =
∑
c

[
β
M∑
j=1

‖xc ⊗ fj −
N∑
i=1

wi,j,c(zi,c ⊗ fj)‖22

+ τ
M∑
j=1

‖wj,c‖1
]
.

(18)

Similarly, the update step for xc can be performed for each
channel using a similar formula to Equation 11 as

Fxc =

(FkFyc +
∑
d

|F∇d
|2FkFyc + β

M∑
j=1

|Ffj |2
N∑
i=1

wi,j,cFzi,c
)./

(|Fk|2 +
∑
d

|F∇d
Fk|2 + β

M∑
j=1

|Ffj |2),

(19)

Meanwhile, the kernel k is computed by taking a summa-
tion of the both the numerator and denominator over the
color channels as

Fk =
∑
c

[
(FxcFyc +

∑
d

|F∇d
|2FxcFyc)

]
./∑

c

[
(|Fxc |2 +

∑
d

|F∇d
Fxc |2 + α)

]
.

(20)

4 RESULTS AND DISCUSSION

In this section, we aim to demonstrate the advantage of
incorporating the proposed class-specific prior for the blind
deconvolution task. For this purpose, we will provide a de-
tailed performance comparison between our method and a
number of state-of-the-art alternatives over several datasets.
We commence our analysis on the contribution of the com-
ponents in our framework to the overall performance. Here,
we particularly pay attention to the role of the class-specific
prior in our framework. Next, we compare our method
to a number of well-known deblurring methods that are
not equipped with image class priors, in terms of both
quantitative and qualitative results. For completeness, we
will illustrate the superiority of our method to existing
algorithms that exploit class-specific information or class
exemplars, in terms of the visual quality of the results.

4.1 Datasets and experimental settings
We performed the experimental validation on six datasets
including the CMU PIE face dataset [38], the car dataset
in [39], the cat dataset in [20], the ETHZ dataset of shape
classes [40], the Yale-B face database [41] and the INRIA
person dataset [42]. For each dataset, we randomly selected
half of the images as training data and between 10 and
15 sharp images from the remaining half as ground-truth
test images for deblurring. To generate blurred images from
the test images, we employed the eight complex ground-
truth blur kernels computed by Levin et al. [43] from em-
ulated camera shakes. With this input, we compared our
proposed algorithm against the state-of-the-art deblurring
algorithms with and without using class exemplars under
same conditions. The comparison, as will be shown in the
following part of the paper, is based on both the visual
quality of the recovered image and blur kernel, as well as the
numerical accuracy of these two. In this paper, we report the
numerical error of the full image and kernel in terms of the
structural similarity index (SSIM) and peak signal-to-noise
ratio (PSNR).

We have implemented our algorithm in MATLAB on an
Intel CoreTM i7 machine with 16GB of memory. In all of our
experiments, we set the parameters M = 90, α = 10 and
τ = 0.01, initialise β to β0 = 50, and decrease the value of
β by a factor of ρ = 1.3 in every iteration until it reaches the
minimal value of 0.01. In other words, the contribution from
the training images is reduced as the algorithm proceeds
and becomes negligible in the end. In the last few iterations,
the image and kernel estimation is mainly driven by the
information from the blurred image.

For a fair comparison, we strive to apply the same non-
blind deblurring method, i.e. Levin et al. [18], in the final step
of our and prior methods whose source code is available and
can be modified. Pan et al. [12] and Levin et al. [8] already use
Levin et al.’s method [18] in their original implementation.
We also change the default non-blind deconvolution step
in Fergus et al. [3] and Shan et al. [4] to Levin et al. [18].
However, the remaining algorithms in our comparison opt
for other non-blind deconvolution methods, which cannot
be modified in a straightforward manner. For example,
Sun et al. [28] use Zoran and Weiss [27] as a final non-blind
deblurring step. Meanwhile, Zhong et al. [44], Cho et al. [5]
and Xu et al. [9] devise their own non-blind deconvolution
methods and only provide the binary executables of their
algorithms. In addition, Krishnan et al. [7] utilised their
previous work in [16].

4.2 Ablative studies
We perform an extensive ablative studies to validate the
efficacy of our approach in various aspects.

4.2.1 Effectiveness of the proposed prior
Using the data and setting described above, we demonstrate
the effectiveness of the proposed class-specific prior within
our deblurring framework. In Figure 3, we compare the
visual quality of the recovered latent image and the kernel
obtained without the prior (in the third column) and with
the prior (in the last column). Evidently, the image recovered
with the prior does not contain visible artifacts, whereas
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Ground-truth Blurred image Without prior With prior

Fig. 3: Latent images and kernels recovered by our method
without (third column) and with the proposed prior (fourth
column).

SSIM PSNR
Prior Without With Without With
Images 0.365 0.754 16.87 25.78
Kernel 0.707 0.855 39.42 42.66

TABLE 1: A comparison of the accuracy achieved by our
deblurring framework on all the mentioned datasets with
and without the proposed prior.

that obtained without the prior shows severe ringing and
multiple false edges. In addition, when inspecting the esti-
mated kernel (better viewed when zoomed in the electronic
copy), we observed a noisy one close to the delta kernel
(the initial kernel) when we do not include the image prior
in our method. This suggests that the method may have
not converged without this prior. On the other hand, the
kernel is almost identical to the ground-truth with the prior
included.

Further, we have quantified the accuracy of the recov-
ered latent image and blurred kernel with and without
the use of the class-specific prior. In Table 1, the accuracy
is measured in SSIM and PSNR, indicating the similarity
between the estimated quantities and the corresponding
ground-truth. These results demonstrate that the accuracy of
the recovered image and kernel improves significantly (by
several orders of magnitude) with the proposed prior. This
is consistent with the visual observations above, suggesting
that the proposed prior plays an important role in correctly
guiding the estimates to the ground-truth.

We have also performed an experiment where the prior
only covers the mid and high-frequency bands, and the low-
frequency components of the latent image are estimated
directly from the input image. Without the low frequency
in the prior, the average PSNR for the CMU dataset declines
to 25.67 dB, as compared to 30.75 dB (in Table 4, when all
the frequency bands are incorporated in the image prior).
Hence, incorporating low-frequency bands is beneficial,
rather than harmful, to the deblurring task.

4.2.2 Influence of data fidelity terms
We experimented with different options of the data terms
for the estimation of the latent image (while only employing

SSIM PSNR
Intensity

only
Gradient

only Both Intensity
only

Gradient
only Both

Images 0.678 0.529 0.754 23.28 21.16 25.78
Kernel 0.819 0.745 0.855 41.27 40.01 42.66

TABLE 2: Influence of intensity and gradient fidelity terms
on the deblurring results.

(a) GT (b) Blurred

(c) True kernel (d) Intensity (e) Gradient (f) Both
(40.2/0.837) (50.6/0.975) (52.7/0.985)

Fig. 4: Influence of the data fidelity term in the objective
function on the kernel estimate. A pair of PSNR/SSIM
error metrics is shown for each kernel estimate in the sub-
figures (d)–(f). (a) ground-truth image, (b) blurred image, (c)
ground-truth kernel, (d) estimated kernel with the intensity
term only, (e) estimated kernel with the gradient term only,
(f) estimated kernel with both terms.

the gradient information for estimating the kernel). These
includes the intensity fidelity term, i.e. ‖x⊗k−y‖22, and the
gradient fidelity term, i.e. ‖∇dx⊗ k−∇dy‖22 in Equation 5,
or both.

Table 2 shows the accuracy of the deblurred image and
kernel estimate across all the datasets under study, in terms
of SSIM and PSNR. The highest accuracy is achieved when
both data fidelity terms, i.e. intensity and gradients, are
employed jointly with with the class specific prior, while
using each individual fidelity term yields a lower accuracy.
For this reason, we employ both the intensity and gradient
fidelity terms in our framework.

Figure 4 illustrates example kernels estimated with the
above three options. Specifically, the kernels in Figures 4(d)-
(f) are recovered using only either the intensity or the
gradient fidelity term, and then with both terms, respec-
tively. Among these options, the former two yield kernel
estimates with clear structural deviations from the ground-
truth shown in Figure 4c. On the other hand, the kernel
yielded using both fidelity terms (Figure 4f) is closer to the
ground-truth. This implies a more accurate estimation of the
intermediate latent image.

4.2.3 Influence of the dataset size
We also examine the variation of deblurring performance
with respect to the number of training images. Table 3
shows that the image and kernel estimation accuracy for the
CMU PIE dataset improves consistently with the increasing
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number of training images. Even with only 50 training
samples, our method can achieve an average image accuracy
of 25.87 dB, outperforming all the other methods on this
dataset (More detailed results are given in Table 8).

Training size 50 125 250 500 1000 2000
Image 25.87 26.97 27.92 28.58 30.42 30.75
Kernel 41.15 42.11 42.80 42.99 44.01 44.13

TABLE 3: Deblurring performance (in PSNR) on the CMU
PIE dataset for different numbers of training images.

4.2.4 Choice of the training class
We ask the question whether the choice of training class
significantly alters the deblurring accuracy. To this end, we
experiment with various pairs of training and test object
categories. Table 4 shows the accuracy of deblurred images
(in PSNR) for various training (along the columns) and test
(along the rows) categories. In most cases, the best accuracy
is achieved along the diagonal, i.e. when the input test
image belongs to the same object category as the training
dataset. The only exception is that our algorithm achieves
the best deblurring accuracy for the Yale-B dataset when
being trained on the Cat dataset. This result matches the
observation that a number of features of a cat face such as
eyes, lips and contours resemble those of a human face.
As a consequence, employing cat faces as training data
are potentially as beneficial for the deblurring of human
faces. Otherwise, the PSNR degrades significantly when
the training class differs from the test class. These results
demonstrate the impact of choosing the correct training class
on the deblurring accuracy.

4.2.5 Schedule of the prior weight β
We have assessed the performance of our algorithm with
a fixed weight β over all the iterations. In Table 5, we
present the accuracy of the latent image (in PSNR) recovered
for the INRIA human dataset, with respect to different
constant values of β. The image PSNR suffers severely from
an overweighted image prior (when β ≥ 1), and varies
slightly with a smaller prior weight, i.e. no more than 10−1.
The highest PSNR of 16.90 dB is observed for β = 10−2.
However, it is worth noting that this level of accuracy is still
several orders of magnitude lower than the image PSNR of
18.56 dB, which is reported in the last row and the “Person”
column in the PSNR section of Table 8. This comparison
demonstrates that the strategy of attenuating β by a factor
of ρ = 1.3 in every iteration is more effective than using a
constant prior weight.

Test \ Train Bottles Car Cat CMU Human Yale

Bottles 23.43 20.11 20.91 20.34 20.41 20.87
Car 21.65 24.51 21.93 20.75 19.93 20.21
Cat 20.92 18.31 30.10 21.66 20.88 20.25

CMU 28.19 27.36 26.68 30.75 26.13 28.15
Human 14.24 15.07 13.96 12.95 18.56 14.92

Yale 27.96 25.49 29.24 29.02 25.71 29.04

TABLE 4: Deblurring performance (in PSNR) on each class
of test input (blurred) images when using various (external)
training datasets. The PSNR is significantly higher when the
training dataset matches the test image category.

β 50 5 1 0.5 10−1 10−2 10−3 10−4

PSNR 9.35 8.57 7.57 10.80 16.55 16.90 16.15 16.01

TABLE 5: The average image accuracy (in PSNR) achieved
with a constant prior weight β when our algorithm is
evaluated on the Person dataset [42].

Fig. 5: The relative reconstruction errors (averaged over 80
test images) for the INRIA person [42], the CMU-PIE [38]
and the Yale-B [41] datasets.

4.2.6 The number of bandpass filters
We also evaluate our algorithm performance with different
numbers of bandpass filters i.e.M using the same setting for
other parameters. In Table 6, we observe that the average
image PSNR for the Person dataset [42] varies gradually
with respect to different values of M . Since the peak PSNR
is achieved at M = 90, we employ 90 filters throughout all
other experiments.

No. filters 10 30 50 70 90 110 130
PSNR 17.31 17.81 17.94 18.12 18.56 18.52 18.53

TABLE 6: The average accuracy of the deblurred image (in
PNSR) for the Person dataset [42], with respect to different
numbers of bandpass filters M .

4.2.7 Reconstruction error of the latent image
To validate the prior, we report the relative error of the
latent image reconstructed by the weighted combination
of the filtered training images. We evenly divide the 90
bandpass filters into three groups, corresponding to the low-
frequency, the mid-frequency and the high-frequency bands,
and study the reconstruction error per group. Figure 5
shows the average relative reconstruction error for 80 blurry
images in the INRIA person [42], the CMU-PIE [38] and
the Yale-B [41] datasets, across the above three groups of
frequency bands. For each input image, we employ 100
training images from the same class.

Overall, the average errors in most cases are reasonably
low (6% and below), except the 9% error for the low-
frequency bands in the INRIA Person dataset. This could be
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80 filters 90 filters
Greyscale Colour Greyscale Colour

Images 18.31 18.33 18.56 18.57
Kernel 38.68 39.65 41.32 41.78

TABLE 7: A comparison of the image and kernel accuracy
(in PSNR) obtained using greyscale vs. colour input images.
The results are reported for the INRIA person dataset [42].

explained by the fact that this dataset contains a wider vari-
ety of human poses and background than the other datasets.
In particular, in the mid-frequency and high-frequency re-
gions, the error mean is 1% or below and one standard
deviation above the error mean is lower than 2%, across
the datasets. This supports the claim that, with a sufficient
number of training images and bandpass filters, we can
recover the mid-frequency and high-frequency details of the
blurry images with a high level of accuracy.

4.2.8 Grayscale versus colour images
We compare the accuracy of our algorithm when it is run
on input colour images as opposed to their grayscale coun-
terparts. As a demonstration, we perform this comparison
on the INRIA human dataset [42], using M = 80 and
M = 90 bandpass filters. Table 7 reports the accuracy (in
PSNR) of the kernel estimate and the final deblurred image.
Under both settings, the kernel PSNR obtained from color
input images is higher than that from the grayscale ones.
However, there is no clear correlation between the kernel
PSNR and the image PSNR as the latter is almost unaffected
by the input modality. The explanation is that, although the
kernel estimated from colour images is more accurate, it
may still lack a number of frequency components in the
original image. Therefore, these components could not be
recovered from either the grayscale or the colour blurry
image directly, but could only be hallucinated using image
priors.

4.2.9 Convergence of the algorithm
The objective function in Equation 5 is convex with respect
to each of the variables w, Fx(ω) and Fk(ω). When two of
these three variables are fixed, the overall objective function
is reduced to those in Equations 6, 8 and 13. Those objective
functions are convex with respect to the respective variables
to be optimized, because they consist of a quadratic term,
and an additional `1 regularisation term when the weights
w are to be optimized.

Therefore, each alternating minimisation step between
lines 5 and 10 of Algorithm 1 is guaranteed to converge
to a global minimum for each subproblem. Overall, the
algorithm converges to a local minimal solution for the
variable triplet w, x and k.

In Figure 6a, we demonstrate the convergence of our
algorithm on a sample image. The top row shows the input
(left) and the deblurred image (right). In Figures 6c and 6d,
we plot the similarity of the estimated image and kernel to
the corresponding ground-truth with respect to the iteration
number on the finest scale. Here, the similarity is measured
by SSIM. The overall trend is that the estimated image and
kernel become increasingly similar to the ground-truth in
the long run, and the image and kernel similarity measure

(a) Blurred image (b) Deblurred image

(c) Image accuracy (SSIM) (d) Kernel accuracy (SSIM)

Fig. 6: The convergence of the iterative algorithm. The
image and kernel similarity between the estimated and the
ground-truth are measured in terms of the SSIM.

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

(e) Level 5 (f) Level 6 (g) Final level (h) Ground
truth

Fig. 7: Estimated kernels for the sample image in Figure 6 at
different scales. As visible, the kernel becomes progressively
more similar to the ground-truth at finer resolutions.

plateaus at high values, above 0.92 and 0.99, respectively.
In addition, Figure 7 illustrates the progression of the esti-
mated kernel from the coarsest to the finest resolution, for
the blurred image in Figure 6a. As shown, the estimated
kernel is progressively closer to the ground-truth as the
resolution becomes finer.

4.2.10 Running time
One can deduce the complexity of our algorithm in its basic
implementation. It is necessary to specify the complexity
of each loop, and each step of the algorithm i.e. Equa-
tion 6, 11 and 16. Let m be the number of pixels of the
input image, then the computational load of Equation 6
for N training images is Nm. Equation 11 requires two
2D Fast Fourier Transforms (FFT) and an inverse FFT in
each inner iteration/minimisation step. Notice that, the
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bandpass filters, the derivative filters and responses for the
training images are precomputed. Therefore, after simpli-
fication and ignoring the constants values, the complexity
of Equation 11 is O(m logm). Similarly, for Equation 16
one can see the the complexity to be same as Equation 11
i.e. O(m logm). The computational complexity of the first
pass of the main loop is O(m logm + Nm), while it takes
σ inner iterations and ks/3 outer iterations to give us the
final kernel. Hence, the overall complexity of our method is
O(σksm logm+σksNm), where ks is the size of the kernel.
The execution time for a 320×240 image is 33 seconds
with our MATLAB implementation without any code op-
timization. Notice that, the weight estimation step is highly
parallelisable and the 2D FFT operations typically run in
real-time at full framerate for much larger video frames in
dedicated hardware platforms.

4.2.11 Example real-world images
We also illustrate the qualitative results of our method for
real-world examples, where the original sharp images are
unavailable. Figure 8 illustrates the qualitative results for
two such examples from Pan et al. [12]. For deblurring
purposes, we employ the same kernel size as Pan et al. [12],
i.e. 35 × 35 for the first image and 25 × 25 for the second
one. It is noted that the first example contains noisy and/or
saturated pixels. For this image, our algorithm recovers finer
facial details and hair textures and smoother facial skin
than the remaining methods, whereas the others produce
ringing artefacts and amplify noise. In the second example,
the methods in [6], [12], [28] produce blurry images with
ringing artefacts, perhaps due to the sub-optimal selection of
edge scales for kernel estimation. Our result is competitive
to Krishnan [16], while yielding finer facial details and less
ringing artefacts than Levin et al. [17].

4.3 Comparisons with generic image deblurring
In this section, we compare the performance of our method
to several state-of-the-art deblurring methods that use
generic priors on the datasets mentioned earlier. The meth-
ods included in our comparison are that of Fergus et al. [3],
Shan et al. [4], Cho and Lee [5], Xu and Jia [6], Krishnan et
al. [7], Levin et al. [8], Cai et al. [45], Zhong et al. [44], Xu et
al. [9], Michaeli and Irani [29], Sun et al. [28] and Pan et
al. [12].

We learned a variant of our algorithm on the training
examples combined from all the datasets described in sec-
tion 4.1 and evaluated it on individual classes. We named
this variant “class-agnostic” and reported its performance
in the second last row of Table 8. We also reported the class-
specific variant of our method (last row).

Table 8 presents the average SSIM and PSNR scores for
the recovered latent images. Overall, our “class-agnostic”
variant outperforms all the other methods under study,
and leads the second best method by a significant margin
(several dB in terms of PSNR) in most datasets except for
Shape [40]. This lead is due to the ability of our method
in modelling image signals in a wide range of frequencies.
This aspect distinguishes our method from the previous ap-
proaches, which mainly employ sparse intensity or gradient
priors and, as a consequence, favour reconstructions with
uniform regions.

Moreover, our “class-specific” variant, trained on only
the relevant object class offers a further performance boost
from the class-agnostic variant. This result is an evidence
that class-specific examples provides important information
for improving the quality of the deblurred image.

Further, Table 9 shows the accuracy of the estimated ker-
nel. Apart from SSIM, we computed the ratio of image MSE
when the kernel is estimated (in the blind deconvolution
approach) to that achieved in the non-blind approach (with
the ground-truth kernel) [43]. Our class-agnostic variant
outperforms all the others in terms of ratio of MSE, and is
comparable to the best baseline in terms of SSIM. Again, our
class-specific variant outperforms all the prior works in both
measures. In terms of ratio of MSE, both our approaches
outperform the other by at least an order of magnitude
on several classes. Since our method captures class-specific
information in every frequency band of the latent image, it is
capable of coping with a broad range of kernels, irrespective
of whether they are sparse or not.

Further, we have evaluated our algorithm with training
examples combined from all object classes, and compared
its performance to the case of separate training classes. The
second last row in Table 8 reports the image SSIM and PSNR
using training examples from all object classes. Indeed,
including all the object classes in the training data degrades
the image accuracy compared to only the correct training
class. This result is an evidence that examples within the
same class are more beneficial to the deblurring accuracy
than those outside the class.

For a comprehensive evaluation, we present the qual-
itative comparisons for sample images from the datasets
under study. As the first example, in Figure 9, we show
the deblurring results for a car image from the dataset
in [39]. Overall, our method produces the image with the
smallest amount of artifacts and the most accurate kernel.
Note that the ground-truth image in Figure 9a does not
contain much texture except for a small number of edges.
Therefore, the methods that amplify edges such as those
in [5], [6], [9], [12] receive limited information, thus, cannot
handle this case well. Moreover, the methods based on
gradient sparsity priors, including those in [7], [8], [47],
tend to produce artifacts in the deblurred image. Levin et
al. [8] (Figure 9g) appears to generate a similar result to
our method (Figure 9o). However, a close inspection reveals
that [8] contains ringing defects in the deblurred image and
undesirable non-zeros in the kernel.

As a second example, we present deblurring results on
a challenging image from the INRIA person dataset [42]. As
shown in Figure 10, the input image has a low resolution of
64×80 and incurs severe blur due to the large kernel size rel-
ative to the image size. Note that the results for Sun et al. [28]
and Xu et al.’s [9] methods are not available since their orig-
inal implementations are unable to handle the low image
resolution. Since all the edges are significantly distorted,
sparsity and gradient priors do not benefit the deblurring
task. For this reason, it is difficult for the methods that
utilise these priors, such as those in [5], [6], [44], the MAP
frameworks [4], [7] and the variational Bayesian ones [3], [8],
to explicitly recover sharp edges for kernel computation. In
Figure 10, we show that our method successfully recovers
several objects with a large resemblance to the ground-truth,
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Blurred image Xu & Jia [6] Levin [17] Krishnan [7] Sun [28] Pan [12] Ours

Fig. 8: Deblurring results for real input images from [12], where the one in the first row contains noise and saturated pixels.

SSIM (the higher the better) PSNR (the higher the better)
Methods Car

[39]
Shape

[40]
Cat
[20]

CMU
[38]

Person
[42]

YaleB
[41]

Car
[39]

Shape
[40]

Cat
[20]

CMU
[38]

Person
[42]

YaleB
[41]

Fergus [3] 0.411 0.415 0.598 0.559 0.207 0.535 16.99 16.69 19.88 18.26 14.81 19.56
Shan [4] 0.632 0.624 0.742 0.775 0.407 0.773 21.56 21.61 25.20 25.59 17.78 26.42
Cho [5] 0.559 0.595 0.627 0.699 0.293 0.678 19.99 20.47 22.54 24.38 15.05 22.99
Xu [6] 0.631 0.638 0.704 0.739 - 0.681 20.93 21.25 22.73 23.30 - 23.30
Krishnan [7] 0.544 0.544 0.668 0.693 0.296 0.755 19.75 19.73 22.79 23.54 15.41 24.09
Levin [8] 0.500 0.567 0.699 0.758 0.332 0.673 18.09 19.24 23.12 24.31 16.77 25.22
Cai [45] 0.298 0.358 0.292 0.178 - 0.205 13.89 14.86 14.63 11.72 - 12.37
Zhong [44] 0.485 0.520 0.643 0.641 - 0.655 17.23 18.00 20.73 20.93 - 22.16
Michaeli [29] 0.605 0.641 0.735 0.693 0.226 0.660 18.34 17.36 19.47 18.80 13.39 22.59
Sun [28] 0.481 0.669 0.724 0.744 - 0.680 19.06 22.50 23.93 24.78 - 23.74
Class-agnostic 0.760 0.697 0.818 0.860 0.509 0.745 23.56 22.41 27.14 29.35 18.46 28.03
Class-specific 0.765 0.715 0.864 0.881 0.509 0.788 24.51 23.43 30.10 30.75 18.56 29.04

TABLE 8: Accuracy of the deblurred images, measured by SSIM and PSNR. The missing results, indicated by “-”, occurs
when the respective method is not capable of dealing with the low resolution of the input images. Best results are in bold.

SSIM (the higher the better) Ratio of MSE (the lower the better)
Methods Car

[39]
Shape

[40]
Cat
[20]

CMU
[38]

Person
[42]

YaleB
[41]

Car
[39]

Shape
[40]

Cat
[20]

CMU
[38]

Person
[42]

YaleB
[41]

Fergus [3] 0.629 0.668 0.653 0.759 0.589 0.778 16.99 26.84 11.70 23.11 11.13 14.34
Shan [4] 0.831 0.816 0.819 0.816 0.778 0.780 8.13 13.59 8.72 13.55 11.83 15.34
Cho [5] 0.845 0.830 0.834 0.820 0.803 0.809 32.19 33.39 43.16 45.15 30.94 26.34
Xu [6] 0.840 0.761 0.837 0.840 - 0.815 8.57 11.81 9.84 13.15 - 17.96
Krishnan [7] 0.724 0.721 0.719 0.787 0.698 0.760 9.41 14.47 9.26 12.55 11.22 14.36
Levin [8] 0.702 0.692 0.750 0.782 0.621 0.762 12.53 15.11 8.80 10.84 8.25 10.46
Cai [45] 0.640 0.627 0.652 0.669 - 0.662 36.32 61.23 74.27 188.91 - 252.09
Zhong [44] 0.704 0.755 0.764 0.774 - 0.748 15.72 21.39 15.23 21.02 - 22.68
Michaeli [29] 0.607 0.577 0.606 0.588 0.572 0.660 11.92 22.43 18.09 30.03 18.88 21.31
Sun [28] 0.829 0.822 0.816 0.826 - 0.813 10.66 10.52 8.02 10.35 - 18.11
Class-agnostic 0.842 0.801 0.823 0.883 0.795 0.784 4.01 8.08 2.20 3.93 7.84 11.34
Class-specific 0.884 0.833 0.886 0.901 0.805 0.823 3.93 7.91 1.77 2.99 7.59 10.30

TABLE 9: The accuracy of the estimated kernel, measured by SSIM and ratio of MSE. The missing results, indicated by “-”,
occurs when the respective method is not capable of dealing with the low resolution of the input images. Best results are
in bold.

namely the foreground and background pedestrians, as well
as the bus in the background. In contrast, the mentioned
objects are unrecognisable in the other deblurred images.
Moreover, our estimated kernel is also the most accurate
one among all the methods.

Next, we depict an example from the Cat dataset [20].
The visual quality of our recovered image, as shown in
Figure 11n, outperforms all others. Noticeable features re-

stored by our method include the sharpness and the clarity
of the cat’s eyes. Our method can also recover subtle textures
around the neck, mouth and whiskers of the cat while
they are not reconstructed in the results produced by the
other methods. Further, a magnified view of the results in
Figures 11e-11m shows that the methods that rely on edges,
e.g. Krishnan et al. [7], and patches with high-contrast, e.g.
Sun et al. [28], fail to yield an accurate estimation of the
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(a) Ground-truth (b) Blurred image (c) Fergus et al. [3] (d) Shan et al. [4] (e) Cho and Lee [5]

(f) Xu and Jia [6] (g) Levin et al. [8] (h) Krishnan et al. [7] (i) Cai et al. [45] (j) Sun et al. [28]

(k) Zhong et al. [44] (l) Xu et al. [9] (m) Pan et al. [12] (n) Pan et al. [13] (o) Our method

Fig. 9: Results for a sample image from the Car dataset in [39]. The restored image from our method has more legible text
on the license plate compared to the other methods.

Original Blurred Fergus [3] Shan [4] Cho [5] Xu & Jia [6] Krishnan [7] Levin [8] Zhong [44] Ours

Fig. 10: Comparison of several methods on a sample image selected from the INRIA dataset [42]. Our method successfully
recovers parts of the image with a significant resemblance to the ground-truth, including the pedestrians and the bus in
the background. Our estimated kernel is also the most accurate among all the methods.

(a) Ground-truth (b) Blurred image (c) Fergus [3] (d) Shan [4] (e) Cho & Lee [5] (f) Xu & Jia [6] (g) Krishnan [7]

(h) Levin [8] (i) Cai [45] (j) Sun [28] (k) Zhong [44] (l) Xu [9] (m) Pan [12] (n) Our method

Fig. 11: Comparisons on a sample image from the Cat dataset [20]. Our method recovers fine texture around the neck,
mouth and whiskers, which cannot be accurately reproduced by the others.
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(a) Ground-truth (b) Blurred image (c) Fergus et al. [3] (d) Cho and Lee [5] (e) Xu and Jia [6] (f) Krishnan et al. [7]

(g) Levin et al. [8] (h) Cai et al. [45] (i) Sun et al. [28] (j) Zhong et al. [44] (k) Xu et al. [9] (l) Our method

Fig. 12: Comparisons on a sample image with strong edges and a blurred background, selected from the ETHZ Shape
Classes dataset [40]. The visual quality, e.g. sharpness of the text on the label, reproduced by our method is par to the best
one among the other methods, i.e. Sun et al.’s [28].

(a) Ground-truth (b) Blurred image (c) Fergus et al. [3] (d) Shan et al. [4] (e) Xu and Jia [6] (f) Krishnan [7]

(g) Levin et al. [8] (h) Cai et al. [45] (i) Sun et al. [28] (j) Zhong et al. [44] (k) Xu et al. [9] (l) Our method

Fig. 13: Comparisons on a sample image with rich textures, selected from the ETHZ Shape Classes dataset [40]. On a
magnified view, the image our method recovers is sharper than those generated by most of the methods, and comparable
to the best, i.e. of Xu et al. [9], while exhibiting a less degree of ringing artifacts.

kernel. Our method outperforms Pan et al.’s [12], which
uses class exemplars with additional manually drawn mask
input around the contours of the cat’s head, the mouth and
eyes in the ground-truth image.

Subsequently, we examine the visual quality of the re-
sults achieved by our method and several others on two
examples from the ETHZ Shape Classes dataset [40]. Firstly,
in Figure 12, we show results for an image containing strong
occlusion and text edges and a blurred background with no
sharp textures. Again, our method can recover reasonably
sharp edges and text in the image. Meanwhile, the methods
of Fergus et al. [3], Xu and Jia [6], Krishnan et al. [7], Levin et

al. [8], Cai et al. [45], Zhong et al. [44] and Xu et al. [9] have
poorly estimated the PSF, which indirectly causes ringing
artifacts and multiple false edges in the deblurred image. At
close inspection, Cho and Lee’s method [5] produces slight
ringing on the left occlusion boundary of the bottle and false
edges on the white background of the label. Meanwhile, Sun
et al.’s result in Figure 12i appears to be comparable to ours,
although the kernel they recover incurs a downward shift
compared to the ground-truth. Secondly, we qualitatively
compare deblurring results for an image with rich textures
and edge information, as shown in Figure 13. The blurred
edges in the input image 13b are of different thicknesses,
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(a) Ground-truth (b) Blurred image (c) Fergus [3] (d) Shan [4] (e) Cho & Lee [5] (f) Xu & Jia [6] (g) Krishnan [7]

(h) Levin [8] (i) Cai [45] (j) Zhong [44] (k) Xu [9] (l) Sun [28] (m) Pan [12] (n) Our method

Fig. 14: Comparisons on a face image selected from the CMU PIE dataset [38]. Although our deblurred image appears to
be similar to those produced some other methods, its intensity profile (on the face) is richer than the other methods.

(a) Ground-truth (b) Blurred image (c) Fergus et al. [3] (d) Shan et al. [4] (e) Cho and Lee [5] (f) Xu and Jia [6]

(g) Krishnan et al. [7] (h) Levin et al. [8] (i) Zhong et al. [44] (j) Sun et al. [28] (k) Pan et al. [12] (l) Our method

Fig. 15: Comparisons on a sample face image selected from the Yale-B dataset [41]. The image we recover is more natural
and contains less ringing and exaggerated contrast artifacts. Our estimated kernel is also the closest to the ground-truth.

Original Blurred Xu & Jia [6]
22.01 dB

Krishnan [7]
25.05 dB

Levin [8]
22.67 dB

Zhong [44]
24.66 dB

Sun [28]
25.28 dB

Pan [12]
25.78 dB

Ours
29.51 dB

Fig. 16: Comparisons on a sample image from the FEI dataset [46]. Differences can be better seen in magnified view.

which potentially causes incorrect estimation of the kernel.
Therefore, methods relying on strong or thick edges such as
Fergus et al. [3], Xu and Jia [6], Krishnan et al. [7], Levin et
al. [8] result in strong ringing artifacts and incorrect edges.
Shan et al.’s method [4] suffers less ringing artifacts than
the others but the result appears to be over-smoothed. On a

magnified view, the image we recover is sharper than those
produced by most of the other methods, and comparable to
the best of them, i.e. of Xu et al. [9], while exhibiting a lower
level of ringing artifacts.

Further, we examine the results for two benchmark face
image datasets. The first one is taken from the CMU PIE
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(a) Ground-truth

(b) Xu [6] (c) Levin [8]

(d) Sun [28] (e) Zhong [44]

(f) Pan [12] (g) Ours

Fig. 17: Intensity profiles (corresponding to pixel row 55) of
the deblurred images produced by our method and others.
The input blurred image is given in Figure 15b. The red trace
in each subplot shows the ground-truth profile.

face dataset [38]. As shown in Figure 14b, the blurred image
is quite challenging due to the large scale and the complex
trajectory of the blur-induced motion. As a result, Fergus et
al. [3], Shan et al. [4], Krishnan et al. [7], Levin et al. [8], Xu
et al. [9] and Pan et al. [12] yields incorrect kernels which
are less sparse than the ground-truth one. Although our
deblurred image appears to be similar to those of Xu and
Jia [6], Zhong et al. [44], Xu et al. [9] and Sun et al. [28],
it shows gradual changes in the intensity across the face,
as opposed to the flatness on the other deblurred images.
This result suggests that our algorithm has recovered a
wider range of spatial frequencies than the high frequencies
reproduced by the other methods.

Another face example is selected from the Yale-B

(a)
Groundtruth

(b) Blurred (c) [48] (d) Our result

Fig. 18: Comparison with Zhang et al. [48]. (a) Ground-truth
image, (b) blurred image, (c) deblurring results produced by
Zhang et al. [48], which is reported as a failure case in their
paper, (d) our results.

dataset [41], which contains cropped and well-aligned face
images. In Figure 15, note that Xu et al.’s result is not
available for this example since the image dimensions of
less than 200 × 200 pixels are below the limit that can be
handled by their implementation. The methods of [3], [5],
[6], [7], [12], [28] emphasize noise and artifacts and estimate
the kernel incorrectly. Meanwhile, the images estimated
by [4], [8] and [44] are either over-smooth or lack fine details
such as hair and speckles.

To visually demonstrate that our method recovers the
image more accurately, we randomly select a row of pixels
from the ground-truth image and compare it with the corre-
sponding row in the recovered image. In Figure 17, it can be
observed that our method is the closest to the ground-truth
scanline. The failure of the alternative methods is partly due
to the lack of strong edges in the blurred input image. On
the other hand, by taking the learned frequency spectrum
of faces, our method can recover more curvature and finer
details in the face, and less ringing artifacts than the others.
Our estimated kernel is also the closest to the ground-truth
compared to the others.

Furthermore, our method is not restricted to only frontal
face images, but can also deblur face images in a different
view. In Figure 16, we show results for an image from the
FEI dataset [46]. The training data contains images with
frontal as well as different viewing angles. Our method
yields the highest accuracy (PSNR) using a training dataset
comprising images in a similar pose.

4.4 Comparison with exemplar-based methods
For completeness, we compare our algorithm to several
state-of-the-art deblurring methods that use class exem-
plars. Since the implementations of these methods are not
available publicly, the comparisons are purely based on the
qualitative results reported in the respective papers. In the
comparison, we consider the methods of Zhang et al [48],
HaCohen et al. [33], and those of Pan et al. [12], [13].

As shown in Figure 18a), we examine the performance
of our method and compare it directly with that of Zhang
et al. [48] from their paper, which they classified as a failure
case. This is a challenging example as most of the pixels are
dark and noise prone, and there are almost no salient edge
features to estimate the kernel correctly. In Figure 18b, we
show a blurred image generated by the ground-truth kernel
depicted at its top left corner. In addition, we obtain the
deblurring result recovered by Zhang et al.’s algorithm [48]
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(a) Original (b) Blurred (c) Reference
Image used
by (d)

(d) HaCohen
PSNR: 26.23

(e) Our training images (f) Our result
PSNR: 29.90

Fig. 19: Comparison to HaCohen et al.’s [33] on a blurred
image taken from their paper.

directly from their paper and display both the latent image
and the kernel in Figure 18c (top-left corner). Similarly,
our deblurring result is shown in Figure 18d. As visible,
the latent image produced by Zhang et al. suffers from
ringing artifacts and the estimated kernel does not resemble
the sparse structure of the ground-truth. In contrast, our
recovered latent image contains much fewer artifacts and is
visually closer to the ground-truth. Furthermore, the kernel
computed by our algorithm appears to be more similar in
shape to the original kernel and much sparser than that
produced by [48].

Next, we illustrate the advantage of our method over
that by HaCohen et al. [33] by an example taken directly
from their paper. This method requires a dense correspon-
dence to be established between the blurred input image
and a reference image of the same content and structure.
Here, it is observed that our result is comparable to the
other method. However, the greatest gain from our method
is the simplicity of the required input. Our method does not
need a reference image with restrictive content and structure
and a correspondence map to the blurred image. The only
requirement for our input is that the training images belong
to the same class. In this example, [33] employed a refer-
ence image of the same person, with many matches to the
blurred image, whereas our method permits the flexibility
to collect training faces images of various individuals and
expressions.

More recently, Pan et al. [13] introduced a deblurring
algorithm for two-tone text images using an L0-regularised
intensity and gradient prior and applied it to the deblurring
of non-document text images. We examine the performance
of their method on an image from ETHZ shape classes
dataset [40]. As shown in Figure 20a, the image contains
a cup with large printed text in the foreground and some
cluttered background regions, which possess the same fea-
tures as the non-document text images used in their paper.
Comparing our deblurring result in Figure 20d to that of
Pan et al. [13] in 20c, we observe that our estimated kernel
is more similar to the ground-truth kernel than the other.

(a) Original (b) Blurred (c) Pan [13] (d) Our result

Fig. 20: Deblurring of an image containing foreground text
and complex background. (a) Ground-truth (sharp) image,
(b) blurred image, (c) deblurring results by Pan et al. [13],
(d) our results (zoom in to see the differences).

Ground-truth

Blurred image Pan et al. [12] Our result

Fig. 21: Results for an image provided by Pan et al. [12].
First column: ground-truth image, second column: blurred
images and original blur kernels (at the top left corners of
the images), third column: deblurred images and estimated
kernels by Pan et al. [12], fourth column: our results.

Moreover, in the image recovered by Pan et al., ringing
artifacts are visible around the edges of the text printed on
the cup. In contrast, our algorithm recovers the foreground
text with increased sharpness and much less ringing than
the former method. Furthermore, it restores the legibility
of the background text within the marked red box, which
Pan et al. [13] failed. This stems from the fact that, the `0-
regularised prior employed by Pan et al. simply favours
uniform intensity regions, which is insufficient to capture
spatial variations caused by illumination and shading in
shape images. In this example, our method has aimed to
capture this variation via the subspace of frequency bands,
and therefore is more successful in restoring the original
image.

Subsequently, we compare our method with [12], which
aims at face image deblurring using annotated salient edges
of sharp exemplars. For a fair comparison, we use the
dataset and the mask annotations provided by the authors.
In Figure 21, we depict the deblurring results delivered
by both methods for an example ground-truth image (the
first column), which are blurred with two different blurred
kernels (the second column). Here, we run their implemen-
tation with the contour mask obtained from the ground-
truth image as shown at the top left corner in the first
column of Figure 21. This mask, according to [12], plays a
major role in the selection of salient edges as input for their
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method. The recovered images by [12] and our method are
shown in the third and fourth columns, respectively. We also
show the estimated kernel at the top-left corners of these
images. Comparing these results, our method produces a
sharper image with much fewer artifacts. Besides, it can
be seen that our kernels exhibit a strong similarity to the
ground-truth ones.

5 CONCLUSION AND FUTURE WORK

We have introduced a novel class-specific prior that sig-
nificantly improves the performance of image deblurring.
The prior is designed to capture the properties of transform
domain coefficients for specific image classes over the en-
tire spectrum of frequency bands. Representing images on
the class-specific subspaces, we reconstruct the frequency
responses suppressed after the blurring process. Our ap-
proach overcomes the limitation of existing methods when
dealing with blurred images lacking high-frequency details.
We have demonstrated the role of this prior in extensive
experimental evaluations. We show that our method out-
performs prior deconvolution works that use generic priors
and class exemplars both in numerical accuracy and visual
quality.

At the current state, our algorithm focuses on deblurring
of images containing a single object using a class-specific
training dataset. In the future, this work can be extended
to deal with multiple objects. This could be achieved e.g.
first localising and classifying the different objects in the
image, and deblurring each object region separately using
the training data for the corresponding class. Furthermore,
it is worth investigating whether, and if so, to what extent,
class-specific training data is required as opposed to generic
training data.

Our algorithm is currently limited by the assumption
of spatially uniform blur. In the future, we would like to
extend our blur model to handle non-uniform blur caused
by camera motion, rotation and defocus. This extension
requires the geometrical and physical modeling of image
formation in the above circumstances.
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